A Correction to "A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions"

نویسندگان

  • Ari Arapostathis
  • Vivek S. Borkar
چکیده

In A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions, [SIAM J. Control Optim., 50 (2012), pp. 1886–1902], convergence of the relative value iteration for the ergodic control problem for a nondegenerate diffusion controlled through its drift was established, under the assumption of geometric ergodicity, using two methods: (a) the theory of monotone dynamical systems and (b) the theory of reverse martingales. However, in the proof using (a) it is wrongly claimed that the semiflow is strong order preserving. In this note, we provide a simple generic proof and also comment on how to relax the uniform geometric ergodicity hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Correction to “A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions'' | SIAM Journal on Control and Optimization | Vol. 55, No. 3 | Society for Industrial and Applied Mathematics

In A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions, [SIAM J. Control Optim., 50 (2012), pp. 1886–1902], convergence of the relative value iteration for the ergodic control problem for a nondegenerate diffusion controlled through its drift was established, under the assumption of geometric ergodicity, using two methods: (a) the theory of monotone dynamical systems an...

متن کامل

Convergence of the Relative Value Iteration for the Ergodic Control Problem of Nondegenerate Diffusions

We study the relative value iteration for the ergodic control problem under a nearmonotone running cost structure for a nondegenerate diffusion controlled through its drift. This algorithm takes the form of a quasi-linear parabolic Cauchy initial value problem in Rd. We show that this Cauchy problem stabilizes or, in other words, that the solution of the quasi-linear parabolic equation converge...

متن کامل

Convergence of The Relative Value Iteration for the Ergodic Control Problem of Nondegenerate Diffusions under Near-Monotone Costs

We study the relative value iteration for the ergodic control problem under a nearmonotone running cost structure for a nondegenerate diffusion controlled through its drift. This algorithm takes the form of a quasilinear parabolic Cauchy initial value problem in R. We show that this Cauchy problem stabilizes, or in other words, that the solution of the quasilinear parabolic equation converges f...

متن کامل

A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions

Abstract. The ergodic control problem for a non-degenerate controlled diffusion controlled through its drift is considered under a uniform stability condition that ensures the well-posedness of the associated Hamilton–Jacobi– Bellman (HJB) equation. A nonlinear parabolic evolution equation is then proposed as a continuous time continuous state space analog of White’s ‘relative value iteration’ ...

متن کامل

On the Non-Uniqueness of Solutions to the Average Cost HJB for Controlled Diffusions with Near-Monotone Costs

We present a theorem for verification of optimality of controlled diffusions under the average cost criterion with near-monotone running cost, without invoking any blanket stability assumptions. The implications of this result to the policy iteration algorithm are also discussed. Index Terms controlled diffusions, near-monotone costs, Hamilton–Jacobi–Bellman equation, policy iteration

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2017